On the Cozero-Divisor Graphs of Commutative Rings

نویسندگان

  • Mojgan Afkhami
  • Kazem Khashyarmanesh
چکیده

Let R be a commutative ring with non-zero identity. The cozero-divisor graph of R, denoted by , is a graph with vertices in   R     W R  , which is the set of all non-zero and non-unit elements of R, and two distinct vertices a and b in are adjacent if and only if and   W R  a bR  b aR  . In this paper, we investigate some combinatorial properties of the cozero-divisor graphs     R x   and   R x        such as connectivity, diameter, girth, clique numbers and planarity. We also study the cozero-divisor graphs of the direct products of two arbitrary commutative rings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Cozero-Divisor Graphs of Commutative Rings and Their Complements

Let R be a commutative ring with non-zero identity. The cozero-divisor graph of R, denoted by Γ′(R), is a graph with vertices in W ∗(R), which is the set of all non-zero and non-unit elements of R, and two distinct vertices a and b in W ∗(R) are adjacent if and only if a / ∈ bR and b / ∈ aR. In this paper, we characterize all commutative rings whose cozero-divisor graphs are forest, star, doubl...

متن کامل

On zero-divisor graphs of quotient rings and complemented zero-divisor graphs

For an arbitrary ring $R$, the zero-divisor graph of $R$, denoted by $Gamma (R)$, is an undirected simple graph that its vertices are all nonzero zero-divisors of $R$ in which any two vertices $x$ and $y$ are adjacent if and only if either $xy=0$ or $yx=0$. It is well-known that for any commutative ring $R$, $Gamma (R) cong Gamma (T(R))$ where $T(R)$ is the (total) quotient ring of $R$. In this...

متن کامل

INDEPENDENT SETS OF SOME GRAPHS ASSOCIATED TO COMMUTATIVE RINGS

Let $G=(V,E)$ be a simple graph. A set $Ssubseteq V$ isindependent set of $G$,  if no two vertices of $S$ are adjacent.The  independence number $alpha(G)$ is the size of a maximumindependent set in the graph. In this paper we study and characterize the independent sets ofthe zero-divisor graph $Gamma(R)$ and ideal-based zero-divisor graph $Gamma_I(R)$of a commutative ring $R$.

متن کامل

On quasi-zero divisor graphs of non-commutative rings

Let $R$ be an associative ring with identity. A ring $R$ is called reversible if $ab=0$, then $ba=0$ for $a,bin R$. The quasi-zero-divisor graph of $R$, denoted by $Gamma^*(R)$ is an undirected graph with all nonzero zero-divisors of $R$ as vertex set and two distinct vertices $x$ and $y$ are adjacent if and only if there exists $0neq rin R setminus (mathrm{ann}(x) cup mathrm{ann}(y))$ such tha...

متن کامل

Graphs and principal ideals of finite commutative rings

In [1], Afkhami and Khashyarmanesh introduced the cozero-divisor graph of a ring, Γ′(R), which examines relationships between principal ideals. We continue investigating the algebraic implications of the graph by developing the reduced cozero-divisor graph, which is a simpler analog. Acknowledgements: This research was undertaken at the Wabash College Mathematics REU in Crawfordsville, Indiana....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013